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Abstract 

A number of proofs of the spectral theorem for unbounded self-adjoint operators in a complex 

Hilbert space have been developed. Most of them uses a bounded transform to get the desired 

results. In this paper, we proof the same theorem using a new a bounded self-adjoint operator 

transform constructed due to the mapping 𝑧 ↦ 2𝑧(1 + 𝑧2)−1 for a complex number 𝑧. 

Keywords: Unbounded operators, Self-adjoint operators, Spectral theorem. 

 

Introduction 

A number of proofs for the spectral theorem for unbounded self-adjoint operators on a Hilbert space 

have been done by a number of scholar. In paper, we provide an alternative proof using the bounded 
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transform of unbounded self-adjont operator. The operator is due to a bounded mapping 𝑧 ↦2𝑧(1 + 𝑧2)−1, for a complex number 𝑧, which is bounded above by 1 and below by −1. The 

function is defined on the whole of the real number set making it suitable to transform any 

unbounded operator defined on the whole of the real number space, ℝ .   
We begin by highlighting basic results on densely closed operators and the spectral integral then 

construct a bounded operator due to the above mapping. Finally, the theorem is proved using its 

bounded version with reference to the bounded transform operator. In this paper, ℑ(𝑓) implies an 

integral of 𝑓 while the abbreviations 𝑅𝑎𝑛 and 𝐾𝑒𝑟 to refer to the range and kernel of an operator, 

respectively. 

Definition: Closed Operator. Let 𝐹 ∶  𝐷(𝐹) ⊆ ℍ1 →  ℍ2   be an operator. The operator is closed if 

for any convergent sequence 𝑥𝑛 ∈  𝐷(𝐹) such that 𝑥𝑛 →  𝑥 ∈  ℍ1, we have 𝐹𝑥𝑛 →  𝑦 ∈  ℍ2 

implying that 𝐹𝑥 = 𝑦.     

The operator is densely defined if 𝐷(𝐹) = ℍ. An important property of densely defined closed 

operators is that they are equal to the adjoints of their adjoints (double adjoints), that is, 𝐹 = 𝐹∗∗,[4].  

Definition: Graph of an operator. The graph of an operator 𝐹 is the set Γ𝐹 = {(𝑥, 𝐹𝑥): 𝑥 ∈  𝐷(𝐹)}. 

  

The graph of an operator provides the best approach for analyzing unbounded operators because it 

has the sense of domain as well as the action of an operator. The graph is a subset of a product space, ℍ ⊕ ℍ; most important, its adjoint brings about a decomposition on the very product space. If   𝜅: ℍ1 ↦  ℍ2 is function such that 𝜅(𝑥, 𝑦) = (−𝑦, 𝑥) for 𝑥 ∈  ℍ1 and 𝑦 ∈ ℍ2, then Γ𝐹∗ = 𝜅(Γ𝐹)⊥. If 

the operator 𝐹 is a closed operator, then ℍ ⊕ ℍ = Γ𝐹∗  + 𝜅(Γ𝐹), [1,3,5]. 

An operator in said to be closed if its graph is a closed subspace of the product space ℍ ⊕ ℍ. The 

adjoint operator 𝐹∗, too satisfies the conditions in the definition of a closed operator, hence, it is a 

closed operator.  

This paper focuses on self-adjoint operators as such, we will be studying a special group of closed 

operators since self adjoint operators are closed by virtue of 𝐹 being equal to 𝐹∗. It is vital that we 

highlight one of the basic properties of a densely linear defined operator, 𝐹, that, if its nullspace is {0} and its range is dense in the Hilbert space, then, its adjoint is invertible and (𝐹∗)−1 = (𝐹−1)∗. 

When such operator is self-adjoint, then the relation becomes  𝐹−1 = (𝐹∗)−1 = (𝐹−1)∗ 

implying that its inverse is also self-adjoint, [1,3].  
The study of self-adjoint operators necessitates a time to time reference to symmetric operators, 

which in most cases, are regarded as their restrictions on a smaller space. An operator is 𝐹 is 

symmetric if 𝐷(𝐹) ⊆ 𝐷(𝐹∗) and 〈𝐹𝑢, 𝑣〉 = 〈 𝑢, 𝐹𝑣〉. Furthermore, the densely defined operator 𝐹 is a 

symmetric operator, if and only if 〈𝐹𝑢, 𝑢 〉 is real for 𝑢 ∈ 𝐷(𝐹)$, [5]. If 𝐷(𝐹) = 𝐷(𝐹∗) then 𝐹 is 
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self-adjoint. A times, it may be necessary to call self-adjoint operators as densely defined bounded 

symmetric operators, [5].  

The spectral theorem of self-adjoint operators is about the representation of a self-adjoint operator as 

an integral of an almost everywhere finite measurable function with respect to some unique 

projection values measure, the spectral measure, evaluated over its spectrum. As such, there is need 

to consider some important aspects of the spectral integrals. 

Definition: Spectral measure. Let 𝑋 be a set and 𝔛 its 𝜎-aglebra, then the operator 𝑃(⋅) from 𝔛 to 

the Hilbert space ℍ, is a spectral measure if  

1) 𝑃(𝜃) is an orthogonal projection, that is, 𝑃2(𝜃) = 𝑃(𝜃)  and 𝑃∗(𝜃) = 𝑃(𝜃), 𝜃 ∈  𝔛  

2) 𝑃(𝑋) = 1, 

3) 𝑃( ⋃ 𝜃𝑖∞𝑖=1 ) = ∑ 𝑃(𝜃𝑖)∞𝑖=1  for 𝜃𝑖 ∈ 𝔛, 𝑖 ∈ Λ such that 𝜃𝑖 ∩ 𝜃𝑗 = ∅ for 𝑖 ≠ 𝑗 and ⋃ 𝜃𝑖∞𝑖=1 = 𝑋.  

Definition: Spectral integral. Let 𝑋 be a set, 𝔛  its 𝜎-aglebra, 𝒲 = (𝑋, 𝔛, 𝑃) be a space of 𝑃-almost 

everywhere (𝑎. 𝑒) −finite measurable function Ψ: 𝑋 → ℂ ∪ ∞, where 𝑃 is a spectral measure. Let (𝑀𝑖)𝑖∈ℕ be sequences of sets in 𝔛 such that 𝑀𝑖 ⊆ 𝑀𝑖+1  and 𝑃(⋃ 𝑀𝑖∞𝑖=1 ) = 𝐼 where  

  𝑀𝑖 = {𝑧 ∈ 𝑋 ∶   ‖Ψk(𝑧)‖ ≤  𝑛 , 𝑘 = 1,2, … , 𝑚}  
 for all Ψ. Then the spectral integral (for unbounded measurable function) is  ℑ(Ψ) = Sup𝑖∈ℕ ∫ Ψ𝜒𝑀𝑖(𝑧) d𝑃(𝑧)𝑋     
where 𝜒𝑀𝑖 is an indicator function on 𝑀𝑖. This integral ℑ(Ψ) is an operator and its domain is 

  𝐷(ℑ(Ψ)) = {𝑥 ∶  ‖ℑ(Ψ)𝑥‖2 < ∞  for  𝑥 ∈  ℍ } 

where   ‖ℑ(Ψ)𝑥‖2 = Sup𝑖∈ℕ ∫ |Ψ𝜒𝑀𝑖(𝑧)|2d〈𝑃(𝑧)𝑥, 𝑥 〉𝑋  < ∞. 
The properties of the general integral ℑ(Ψ)as well as ℑ(Ψ) ≥ 0can be found in [5, 1]. We now 

proceed to the properties of our transform. 

 

2. Development of the transform 

In this section, we developing the transform operator due to the mapping 𝑧 ↦ 2𝑧(1 + 𝑧2)−1 for a 

complex number 𝑧. To define an inverse for the function, we break it into two parts, on [−1,1] and 

on ℝ\[−1,1]. The inverse of the function 𝑠(𝑧) = 2𝑧(1 + 𝑧2)−1 on [−1,1] is 𝑓1(𝑤) = 1−√1−𝑤2𝑊  while 
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that of the same function on ℝ\[−1,1] is 𝑓1(𝑤) = 1+√1−𝑤2𝑊 . We discuss important properties of the 

operator due to the function 𝑠(𝑧) that will be useful in the proof of the spectral theorem for the 

unbounded operators. 

Lemma 2:1 

Let 𝐹 ∶ ℍ1 →  ℍ2 be a densely defined linear closed operator between two Hilbert spaces, then  

1) The operator 𝐼 +  𝐹∗𝐹 is a bijective hence invertible 

2) The inverse operator (𝐼 +  𝐹∗𝐹)−1 is a bounded linear self-adjoint operator, and 0 ≤ (𝐼 +  𝐹∗𝐹)−1 ≤ 𝐼. 
3) The operator 𝐼 +  𝐹∗𝐹 is self-adjoint so is 𝐹∗𝐹. 

 

Proof 

(1). Since 𝐹 is a closed densely defined operator whose graph is Γ𝐹, we have ℍ1 ⊕  ℍ2 = Γ𝐹∗ ⊕𝜅(Γ𝐹). Therefore, for every ℎ ∈ ℍ1, there exists 𝑢 ∈ 𝐷(𝐹) and 𝑣 ∈ 𝐷(𝐹∗) such that 

    (0, ℎ) = (𝑣, 𝐹∗𝑣) + 𝜅(𝑢, 𝐹𝑢) 

                = (𝑣, 𝐹∗𝑣) + (−𝐹𝑢, 𝑢) 

  = (𝑣 − 𝐹𝑢, 𝐹∗𝑣 + 𝑢). 
Thus, 0 = 𝑣 − 𝐹𝑢 and ℎ = 𝐹∗𝑣 + 𝑢 implying that 𝑣 = 𝐹𝑢 and ℎ = 𝑢 + 𝐹∗𝑣 = 𝑢 + 𝐹∗𝐹𝑢 = (𝐼 +𝐹∗𝐹)𝑢. Thus, for each ℎ ∈ 𝑅𝑎𝑛(𝐼 + 𝐹∗𝐹), we have 𝑢 ∈ 𝐷(𝐼 + 𝐹∗𝐹) implying that 𝐼 + 𝐹∗𝐹 is 

surjective.  

On the other hand, we have  ‖(𝐼 + 𝐹∗𝐹)𝑢‖2  = 〈𝑢 + 𝐹∗𝐹𝑢, 𝑢 + 𝐹∗𝐹𝑢 〉 
                               = ‖𝑢‖2 + ‖𝐹∗𝐹𝑢‖2 + 〈𝑢, 𝐹∗𝐹𝑢〉 + 〈𝐹∗𝐹𝑢, 𝑢 〉                                 =  ‖𝑢‖2  + ‖𝐹∗𝐹𝑢 ‖2 + 〈𝐹𝑢, 𝐹𝑢〉 + 〈𝐹𝑢, 𝐹𝑢〉                                =  ‖𝑢‖2  + ‖𝐹∗𝐹𝑢 ‖2 + 2‖𝐹𝑢 ‖2  ‖(𝐼 + 𝐹∗𝐹)𝑢‖ = ‖𝑢‖. 
Thus, 𝐼 + 𝐹∗𝐹 is bounded below implying that 𝐾𝑒𝑟(𝐼 + 𝐹∗𝐹) = {0}, therefore, 𝐼 + 𝐹∗𝐹 is injective. 

The bijectivity of 𝐼 + 𝐹∗𝐹 implies that it is invertible, thus, (𝐼 + 𝐹∗𝐹)−1 exists. 
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(2). Let 𝑢 ∈ 𝐷(𝐼 + 𝐹∗𝐹) = 𝐷(𝐼) ∩  𝐷(𝐹∗𝐹) = 𝐷(𝐹∗𝐹), then there is ℎ ∈ 𝑅𝑎𝑛(𝐼 + 𝐹∗𝐹) such that ℎ = (𝐼 + 𝐹∗𝐹)𝑢. Since 𝐼 + 𝐹∗𝐹 is invertibe, we have 𝑢 = (𝐼 + 𝐹∗𝐹)−1ℎ. Furthermore, for 𝑢 ∈𝐷(𝐹∗𝐹), 〈𝐹∗𝐹𝑢, 𝑢〉 = 〈𝐹𝑢, 𝐹𝑢〉 = ‖𝐹𝑢‖2 ≥  0. Therefore, ‖(𝐼 + 𝐹∗𝐹)−1ℎ‖  = ‖𝐼𝑢‖ ≤ ‖(𝐼 + 𝐹∗𝐹)𝑢‖ = ‖ℎ‖ 

Thus, 0 ≤  (𝐼 + 𝐹∗𝐹)−1 ≤ 𝐼 implying that it is bounded above. 

Next, we show that (𝐼 + 𝐹∗𝐹)−1 is symmetric. Denote (𝐼 + 𝐹∗𝐹)−1 by 𝐿 hence 

 〈𝐿ℎ, ℎ〉   = 〈(𝐼 + 𝐹∗𝐹)−1 ℎ, ℎ〉 

 = 〈𝑢, ℎ〉 
 = 〈𝑢, 𝑢 + 𝐹∗𝐹𝑢〉                = 〈𝑢, 𝑢〉 + 〈𝑢, 𝐹∗𝐹𝑢〉                = 〈𝑢, 𝑢〉 + 〈𝐹𝑢, 𝐹𝑢〉                = ‖𝑢‖2 + ‖𝐹𝑢‖2 ∈ ℝ. 
Thus, 𝐿 = (𝐼 + 𝐹∗𝐹)−1 is symmetric. Since (𝐼 + 𝐹∗𝐹)−1 is symmetric and bounded, it is self-

adjoint. 

(3). The operator 𝐿 = (𝐼 + 𝐹∗𝐹)−1 is self-adjoint hence closed. It is invertible and its inverse is 𝐼 + 𝐹∗𝐹. Thus, 𝐾𝑒𝑟(𝐿) = {0} = 𝑅𝑎𝑛(𝐿)⊥. This implies that 𝑅𝑎𝑛(𝐿) is dense in ℍ2 hence the 

inverse of 𝐿∗ exists and 𝐿−1 = (𝐿∗)−1 = (𝐿−1)∗. 
Thus, the inverse is self-adjoint, [1, 5].  

The fact that 𝐹∗ is closed and densely defined linear operator, we have 𝐹 = 𝐹∗∗ , hence applying 

adjoint twice on the following 𝐹∗𝐹 ⊆  𝐹∗𝐹∗∗ 

we get that 𝐹∗𝐹 = (𝐹∗𝐹)∗ thus, 𝐹∗𝐹 is self-adjoint.                                     

We now investigate the operator 𝑆 = 2𝐹𝐿 where 𝐿 = (𝐼 + 𝐹∗𝐹)−1  and 𝐹 is a densely defined closed 

operator on a Hilbert space, ℍ. . 
Lemma 2.2 

Let 𝐹 be a densely defined closed linear operator on a Hilbert space, ℍ then, 
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1) The operator 𝑆 is bounded and ‖𝑆‖ ≤  1. 
2) The operator 𝑆 is self-adjoint if and only if 𝐹 is self-adjoint.  

Proof 

Let 𝑥, 𝑦 ∈ 𝐷(𝐹∗𝐹) = 𝐷(𝐼 + 𝐹∗𝐹), and 𝑢, 𝑣 ∈ 𝑅𝑎𝑛(𝐼 + 𝐹∗𝐹) be such that 𝑢 = (𝐼 + 𝐹∗𝐹)𝑥 and 𝑣 = (𝐼 + 𝐹∗𝐹)𝑦 then 𝐿𝑢 = 𝑥 and 𝐿𝑣 = 𝑦. The operator 𝐿 = (𝐼 + 𝐹∗𝐹)−1$ is bounded and ‖𝐿‖ ≤ 1, 

hence  ‖𝐿∗  −  𝐿∗𝐿 ‖ ≤ 14. From the relation 𝐿(1 + 𝐹∗𝐹) = 𝐼, we have 𝐿𝑢 + 𝐹∗𝐹𝐿𝑢 = 𝑢, therefore ‖𝑆𝑢‖2  =  ‖2𝐹𝐿𝑢‖2  
 = 4〈 𝐿𝑢, 𝐹∗𝐹𝐿𝑢 〉 
 = 4〈 𝐿𝑢, 𝑢 − 𝐿𝑢 〉 
 = 4〈 𝑢, 𝐿∗𝑢 − 𝐿∗𝐿𝑢 〉 
 ≤  4〈 𝑢, 𝑆up(𝐿∗ − 𝐿∗𝐿)𝑢 〉 
 =  4 〈 𝑢, 0.25𝑢〉 
 = 〈 𝑢, 𝑢〉 
 =  ‖𝑢‖2     ‖𝑆𝑢‖ ≤ ‖𝑢‖ . 
This implies that     ‖𝑆‖ ≤1. 

(2). From above conditions together with the relation 𝐿(𝐼 + 𝐹∗𝐹) = 𝐼 which implies that  

 𝐿𝐹∗ + 𝐿𝐹∗𝐹𝐹∗ = 𝐹∗ and the self-adjointness of 𝐹∗𝐹, we have 〈2𝐹𝐿𝑢, 𝑣〉 = 2〈2𝐹𝐿𝑢, (𝐼 + 𝐹∗𝐹)𝑦〉 
     = 2〈𝐿𝑢, 𝐹∗(𝐼 + 𝐹∗𝐹)𝑦〉 
     = 2〈𝐿𝑢, 𝐹∗(𝐼 + 𝐹∗𝐹)𝐿𝑣〉 
    = 2〈𝑢, (𝐿𝐹∗ + 𝐿𝐹∗𝐹∗𝐹)𝐿𝑣〉 
                  = 2〈𝑢, (𝐿𝐹∗ + 𝐿𝐹∗𝐹𝐹∗)𝐿𝑣〉 
               = 2〈𝑢, 𝐹∗𝐿𝑣〉 
                  = 〈𝑢, 2𝐹∗𝐿𝑣〉 
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                  = 〈𝑢, 2𝐹𝐿𝑣〉, 
only if 𝐹 is symmetric. Thus, 𝑆 = 2𝐹𝐿 is symmetric if and only if 𝐹 is symmetric. Since 𝑆 = 2𝐹𝐿 is 

bounded, then 𝑆 = 2𝐹𝐿 is self-adjoint if and only if 𝐹 is self-adjoint. 

 

3. Spectral theorem for the unbounded self-adjoint operators 

We now proceed to state and prove the spectral theorem for unbounded self-adjoint operator using 

the bounded transform 𝑆 = 2𝐹𝐿.  

Theorem 3.1 

Given that 𝐹 is a self-adjoint operator on a Hilbert space ℍ, then there exists a unique spectral 

measure 𝑃𝐹, dependent on 𝐹$ on the Borel sigma-algebra 𝐵(ℝ) such that  𝐹 = ∫ 𝑧 d𝑃𝐹(𝑧)ℝ  . 
Proof 

From Lemma 2.2, the operator 𝑆 = 2𝐹𝐿 =  2𝐹(𝐼 + 𝐹∗𝐹)−1 is a bounded self-adjoint operator on a 

Hilbert space ℍ if 𝐹 is a self-adjoint operator. Furthermore,  ‖𝑆‖ ≤ 1 implying that 𝜎(𝑆) ⊆  [−1,1] 
where 𝜎(𝑆) denotes the spectrum of the operator 𝑆. 

Let us denote the set 𝔗 = [−1,1], then 𝔗 is compact interval on ℝ. If 𝐵( 𝔗) is the Borel sigma 

algebra of 𝔗, then by the spectral theorem of bounded self-adjoint operators [5], there exists a unique 

spectral measure 𝑃𝐹, dependent on 𝐹, on 𝐵( 𝔗) such that       3.1                                                     𝑆 = ∫ 𝑤 d𝑃𝑆′(𝑤) 𝔗  . 
Thus, 𝑆 = ℑ(𝑤). Since 𝑆 is invertible (piecewise) we have 𝐾𝑒𝑟(𝑆) = {0}. Consequently,           𝑃′({0})ℍ ⊆  𝐾𝑒𝑟(𝑆)  = {0} implying that 𝑃′({0}) = 0. Therefore, 𝑓(𝑤) = 1± √1−𝑤2𝑤  are 𝑃′ − 𝑎. 𝑒 

finite Borel functions on 𝔗. 

The domain of the integral operator ℑ, of the function 𝑓(𝑤) is    𝐷(ℑ (𝑓)) = {𝑥 ∈ ℍ ∶ ∫|𝑓(𝑤)|2 d〈𝑃′(𝑤)𝑥, 𝑥〉  < ∞ }. 
Given the relation 𝑆 = ℑ(𝑤), we seek to proof that 𝐹 = ℑ(𝑓) given that 𝑆 = ℑ(𝑤). We have |𝑤| ≤ 1, hence 1 − 𝑤2 ≥  0. Using properties of integrals in [1, 5], we apply integrals on 𝑓(𝑤) =1±√1−𝑤2𝑤 , 𝑤 ≠ 0 to get   ℑ(𝑓(𝑤)) = ℑ (1 ± √1 − 𝑤2𝑤 ) = 1 ± √1 − ℑ(𝑤2)ℑ(𝑤) = 1 ± √1 − 𝑆2𝑆 . 
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We have two cases ℑ(𝑓(𝑤)) = 1+√1−𝑆2𝑆  and ℑ(𝑓(𝑤)) = 1−√1−𝑆2𝑆  which are equivalent to  ℑ(𝑓) −1𝑆 − √1−𝑆2𝑆 = 0 and ℑ(𝑓) − 1𝑆 + √1−𝑆2𝑆 = 0, therefore,  

(ℑ(𝑓) − 1𝑆 − √1 − 𝑆2𝑆 ) (ℑ(𝑓) − 1𝑆 − √1 − 𝑆2𝑆 ) = 0 

                             ℑ2(𝑓) − 2ℑ(𝑓)𝑆 + 1𝑆2 − 1 − 𝑆2𝑆2 = 0 

                      𝑆2ℑ2(𝑓) − 2𝑆ℑ(𝑓) + 1 − 1 + 𝑆2𝑆2 = 0 

                                      𝑆2ℑ2(𝑓) − 2𝑆ℑ(𝑓) + 𝑆2 = 0                                              𝑆ℑ2(𝑓) − 2ℑ(𝑓) + 𝑆 = 0                                          𝑆(𝐼 + ℑ2(𝑓)) − 2ℑ(𝑓) = 0 

                                                                                  𝑆 = 2ℑ(𝑓)𝐼 + ℑ2(𝑓) 

                                                                                      = 2𝐹𝐼 + 𝐹∗𝐹 . 
We have that ℑ(𝑓) = 𝐹. 
We now prove the existence of a unique spectral measure 𝑃′ on 𝔗. To prove the uniqueness of the 

spectral measure in the unbounded case, it is enough to show the same in the bounded case due to the 

bounded transform 𝑆 = 2𝐹(𝐼 + 𝐹∗𝐹)−1 . Since 𝑤 ≠ 0, we can define an inverse from 𝑤 [−1,1] \{0} 

to 𝑓(𝑤) = 𝑧 ∈ ℝ. 
We defined 𝑓 as 𝑓(𝑤) = 1±√1−𝑤2𝑤  where the inverse of 𝑓(𝑤) = 1−√1−𝑤2𝑤  was 𝑓−1(𝑧) = 2𝑧1+𝑧2 for 𝑧 ∈ [−1,1] and that of 𝑓(𝑤) = 1+√1−𝑤2𝑤   was 𝑓−1(𝑧) = 2𝑧1+𝑧2 for 𝑧 ∈ ℝ\[−1,1].  Let 𝑓 be a function 

from the measure space (𝔗, 𝐵(𝔗), 𝑃′) to (ℝ, 𝐵(ℝ), 𝑃) where 𝑃 is the spectral measure on 𝐵(ℝ).  

For unique mapping, let [−1, 𝑎] = 𝜒 ⊂  𝐵(𝔗) for −1 < 𝑎 ≤ 0 and ℝ− denote the negative part of 

the real number system, we define the inverse function 𝑓 as 𝑓−1(𝜂2  − (ℝ− \[−1,1] − 𝜂1)) = 𝜒 for 𝜂1 , 𝜂2 ⊆ 𝐵(ℝ) where (−∞, 𝑏] = 𝜂1 ⊆ (−∞, −1] ⊂   𝜂2 ⊆ (−∞, 0] for −∞ < 𝑏 ≤  −1. The 

function is well defined since 𝐵(ℝ) is a sigma -algebra. 

On the other hand, let [−1, 𝑎] = 𝜒 ⊂  𝐵(𝔗) for 0 < 𝑎 ≤ 1, we define the inverse function 𝑓 as                             𝑓−1(𝜂1 ∪ (ℝ − 𝜂2)) = 𝜒 for 𝜂1, 𝜂2 ⊆  𝐵(ℝ) where (−∞, 𝑏] = 𝜂1 ⊆ (−∞, 1] ⊂ 𝜂2 ⊆ ℝ, 0 <  𝑏 ≤ 1. 
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Likewise, the function is well defined since 𝐵(ℝ) is a sigma -algebra. Letting 𝜃 be any of above 

arguments for 𝑓−1, we have 𝑃(𝜃) =  𝑃′(𝑓−1(𝜃)) 

is a measure on 𝐵(ℝ). Therefore, by the push-forward integral formula [2], the integral of 𝑧 is given 

by  

∫ 𝑧 d𝑃(𝑧)ℝ  = ∫  𝑓(𝑤) d𝑃′(𝑤)𝔗 = ℑ(𝑓) = 𝐹.  
To prove the uniqueness, the apply the assertion of the uniqueness of spectral measure for bounded 

self-adjoint operators. Given that 𝒫 is another spectral measure on elements of 𝐵(ℝ) such that   𝐹 = ∫ 𝑧 d 𝒫𝐹(𝑧)ℝ   . 
Then 𝒫(𝜒) = 𝒫′(𝑓(𝜒)) for 𝜒 ∈  𝐵(𝔗\{0}) is also spectral measure, hence 

𝑆 = 2𝐹𝐿 = ∫ 𝑓−1(𝑧) d𝒫(𝑧)ℝ  = ∫ 𝑤 𝑑𝒫′(𝑤)𝔗\{0}  . 
Define 𝒫′(𝜒) as 𝒫′(𝜒): = 𝒫′(𝜒 ∩  (𝔗\{0}) ), 𝜒 ∈ 𝐵(𝔗), then 𝒫′(𝑓(𝜒) ) is extended to 𝔗 by 𝒫′(𝜒) 

defined above, thus, by the uniqueness assertion of the spectral theorem for bounded self-adjoint 

operators, we get that 𝒫′ = 𝑃′ and 𝒫 = 𝑃 as required.  
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